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Abstract
Accurate mapping of land use/cover conditions provides essential information for
managing natural resources and is critical for further examination of land use/
cover change and its subsequent impacts on the environment. Remote sensing
offers a means of acquiring land use/cover data in a timely manner, with optical
remote sensing images commonly being used in land use/cover related studies.
The persistent cloud cover during the rainy season in Southeast Asia, however,
presents a challenge for using optical images in land use/cover mapping. Inte-
grating multi-sensor images of different spectral domains is thus desirable
because more information can be extracted to improve the mapping accuracy. The
purpose of this study is to assess the potential of using multi-sensor data sets for
land use/cover mapping in a tropical mountainous area in northern Thailand.
Optical data from Landsat Thematic Mapper, radar images from Advanced
Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar
(PALSAR), and topographical data were used, providing complementary infor-
mation on land use/cover. Classification and accuracy assessment were conducted
for 12 different combinations of the data sets. The results suggested that short
crop mapping using multi-temporal Phased Array type L-band Synthetic Aperture
Radar images offered insights into the distributions of crop and paddy fields.
Because of the mountainous environment of the study area, combining topo-
graphic data of elevation and slope into the classification greatly reduced the
confusion between different land use/cover types. Improvement of classification
accuracy was evident especially in separating evergreen and deciduous forests
from other vegetation types and discriminating urban village and the fallow field
classes.
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PALSAR Phased Array type L-band Synthetic Aperture Radar
SAR Synthetic Aperture Radar
SPOT the Système Pour l’Observation de la Terre
TM Thematic Mapper

Introduction
Humid tropical forests harbor the richest terres-
trial reservoir of biological diversity but suffer
from rapid land use/cover change (Asner et al.,
2009). In particular, the region of Southeast Asia
has experienced the highest percentage defores-
tation rate and most prominent forest degradation
(Achard et al., 2002; Mayaux et al., 2005).
Studies have suggested possible environmental
impacts of land change, ranging from effects on
stream water quality and land surface tempera-
ture to changes in the global carbon cycle (Foley
et al., 2005; Zhou and Wang, 2011). Understand-
ing and predicting the impacts of land change are
critical for sustainable management of natural
resources, which often require accurate mapping
of land use/cover conditions (Giri et al., 2003).

Optical remotely sensed data, such as the
Landsat Thematic Mapper (TM) and the Système
Pour l’Observation de la Terre (SPOT) images,
are multispectral, allowing most land cover types
to be classified (Peng et al., 2005). Temperate
regions have seen great applications of optical
images in land use/cover mapping (Bartalev
et al., 2003). Humid Southeast Asia, however,
faces a haze issue and persistent cloud cover
during the rainy season can last up to 6 months.
This greatly limits the use of optical images in
land use/cover related studies especially in tropi-
cal mountainous areas because cloud-free scenes
are often unavailable.

There are at least two advantages to include
radar images in land use/cover mapping of the
humid tropics where the main forest conversion
process has been the transformation of closed,
open, or fragmented forests to agriculture
(Achard et al., 2002). First, radar remote sensing
with microwave radiation has a strong penetra-
tion capability and is operational regardless of
the frequency and volatility of cloud cover (Gao,
2009). For example, Synthetic Aperture Radar
(SAR) provides cloud-free images that can
be acquired in almost any weather condition.
Second, for forest landscapes mixed with agri-
cultural practices, various vegetation and crop
types are often difficult to spectrally differentiate
using only optical images. By combining radar
and optical images, an additional portion of the
spectrum is available for classification. Also,

because radar responds more to surface feature
structures rather than reflectivity, radar data are
potentially an advantageous addition to optical
data.

Many land use/cover classification studies
have reported using multi-sensor images such as
optical and radar data (Aschbacher et al., 1995;
Haack and Bechdol, 2000; Hamilton et al.,
2007). Prior work has also incorporated ancillary
data on terrain to improve classification accuracy
in mountainous areas. For example, the addition
of elevation data to SPOT images over an agri-
cultural test site in southern France yielded an
accuracy improvement of 4% (Kanellopoulos
and Wilkinson, 1997). Integrating SAR data
with terrain factors in southern Argentina also
improved the classification accuracy of 3–26%
when two of the three terrain factors (i.e. eleva-
tion, slope, and aspect) were used compared with
using a single terrain factor and the radar tex-
tures; moreover, the accuracy increased by 44%
by adding all three terrain factors compared with
the result using radar textures alone (Peng et al.,
2005). Although these studies have provided
fruitful results in land use/cover mapping, scant
attention has been paid to the tropical mountain-
ous forests in Southeast Asia, where land change
has been occurring at an unprecedented rate and
the probable environmental consequences are of
particular concern (Thanapakpawin et al., 2006).

The purpose of this study was to assess the
potential of using multi-sensor data with terrain
information for land use/cover mapping of tropi-
cal mountainous areas in Southeast Asia. The
data sets used consisted of optical data from
Landsat TM, radar images from the Phased
Array type L-band Synthesis Aperture Radar
(PALSAR) on the Advanced Land Observing
Satellite (ALOS), and terrain information in the
form of a Digital Elevation Model (DEM)
derived from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER)
for an area in northern Thailand. The study
hypothesised that a combination of these data
sets would allow agricultural land use types to be
extracted and evergreen and deciduous forests to
be separated from other vegetation types. The
analyses carried out included analysing multi-
temporal PALSAR data to identify agricultural
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land use types with short crop rotation; integrat-
ing optical data, radar images, and topographical
data for land use/cover classification; and evalu-
ating the classification accuracy. The aim of the
study was to determine whether the combination
of multi-sensor data sets can improve land use/
cover classification in tropical mountainous areas
in terms of classification accuracy.

Study area
The study area is located in the Chiang Mai
Province in northern Thailand (Figure 1). The
spatial extent of analysis is the coverage of one
ALOS-PALSAR scene, approximately 70 km ¥
70 km (18°41″59.69″ N to 19°21″31.88″ N and
98°38″10.58″ E to 99°24″52.92″ E). It has a
mountainous terrain with elevation ranging from
about 300 to 1800 m above sea level; 52% and
15% of the area are below 600 m and above
1000 m, respectively. The area includes six dis-
tricts of the Chiang Mai province (Figure 1) and
covers the Mae Rim and the Mae Ping Part II
catchments of the Ping River basin, which has

experienced rapid forest conversion into agricul-
tural crops in the last several decades (Giri et al.,
2003; Thomas, 2006). The area is characterised
by a tropical monsoon climate with a rainy
season occurring from May to October. Annual
mean rainfall ranges between 1100 and
1300 mm, of which 80% falls within the 6-month
rainy season (Gardner et al., 2007). Annual mean
temperature of northern Thailand is 26.1°C (Thai
Meteorological Department, 2010).

Crop rotation is common in the study area with
rice in the rainy season and soybean, shallot,
tomato, and onion in the dry season. According
to local farming practice, short crops, such as
maize and sweet corn, are grown from April to
early September, and paddy rice is grown from
May to October. Land is increasingly being con-
verted for fruit tree production, such as longan,
lychee, and oranges, because of good profitabil-
ity (Ekasingh et al., 2005). Private business for
resorts and recreation centres is also notable as a
result of its proximity to a major tourist destina-
tion, the city of Chiang Mai. Natural forests and

Figure 1 Location of the study area in northern Thailand. The spatial extent of the study area is one Advanced Land Observing
Satellite/Phased Array type L-band Synthetic Aperture Radar scene, covering 70 km ¥ 70 km and six districts of the Chiang Mai
province.
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ecological conditions exhibit altitudinal zones in
northern Thailand, and altitudes of 600 and
1000 m have been used to distinguish lowland,
midland, and highland zones in the Ping River
Basin (Thomas, 2006). The natural forests of
the lowland, midland, and highland zones are
respectively dry dipterocarp forests, mixed
deciduous forests, and hill evergreen and conif-
erous forests with small areas above 1800 m
being moist temperate forests. Current land use
patterns, albeit influenced by a variety of govern-
ment policies and socio-economic factors,
remain closely related to the altitudinal zones
(Thomas et al., 2004).

Materials and methods

Data
Data used for land use/cover classification in this
study included remote sensing images and terrain
information. The remote sensing images con-
sisted of one optical Landsat TM image and two
radar ALOS-PALSAR images. The Landsat TM
scene dated 2 April 2007 in the dry season had a
spatial resolution of 30 m for all of its spectral
bands, except for the thermal band, for which the
resolution is 120 m. All the bands, except for
the thermal band, were included in the analysis.
The ALOS PALSAR, which acquires L-band
at 23.6 cm, has two modes of polarisation as
HH (horizontally transmitted and horizontally
received) and HV (horizontally transmitted and

vertically received). The two PALSAR images
with a 12.5 m spatial resolution and 38.7° inci-
dent angle were taken in the rainy season on
11 June 2007 and 11 September 2007. The
Earth Remote Sensing Data Analysis Center
(ERSDAC) has ortho-rectified the PALSAR data
to higher level product format (Level 4.1) in
Universal Transverse Mercator (Zone 47) World
Geodetic System 1984 datum, and radiometric
calibrated and extracted radar backscattering
in Beta Nought (ERSDAC, 2009a). The ALOS
PALSAR attains geometric and radiometric
accuracy at 9.3 m and 0.2 dB, respectively (Japan
Aerospace Exploration Agency, 2007).

Terrain information was derived from the
ASTER DEM, a 1 arc-second (approximately
30 m) grid. The estimated accuracies were 20 m
for vertical data and 30 m for horizontal data
at 95 % confidence (ERSDAC, 2009b). The
1:50 000 topographical maps prepared by the
Royal Thai Survey Department (RTSD) in 1999
were used to extract Geographic Information
System (GIS) data such as road networks and
administration boundaries. The land use/cover
mapping procedure is shown in Figure 2. Details
are provided below for the steps of geometric
correction, speckle noise reduction, short crop
mapping, multi-sensor data classification, post-
classification editing, and accuracy assessment to
produce the final land use/cover map. Software
used in data processing and analysis included
ERDAS Imagine 9.1 (Leica Geosystems

Figure 2 Procedure of integrating multi-sensor remote sensing data for land use/cover mapping. ASTER, Advanced Space-
borne Thermal Emission and Reflection Radiometer; DEM, digital elevation model; TM, Thematic Mapper; PALSAR, Phased
Array type L-band Synthetic Aperture Radar.
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Geospatial Imaging, Norcross, GA, USA), ENVI
4.6 (Exelis VIS, Boulder, CO, USA), and ArcGIS
9.3 (ESRI, Redlands, CA,USA).

Geometric correction
The GIS road network data layer derived from
the RTSD topographic maps was calibrated using
Global Positioning System (GPS) data to achieve
a high accuracy for geometric correction of the
Landsat TM image required for multi-sensor data
integration. GPS data were collected along the
road networks throughout the study area in Feb-
ruary 2009 using the HP iPAQ Bluetooth GPS
Navigation System (Hewlett-Packard, Houston,
TX, USA). The horizontal position error of the
GPS was less than 15 m according to the
maximum estimated position error indicated by
the GPS unit. A total of 12 GPS points, including
road intersections, bridges, and building and res-
ervoir corners, were selected as ground control
points for geometric correction because they
could be identified and located accurately on the
image. The final root mean square error was
30 m.

Speckle noise reduction for PALSAR images
Speckle is a granular noise that appears in a
seemingly random pattern of brighter and darker
pixels in radar images (Lillesand and Kiefer,
1999). The presence of speckle in radar images
makes the radiometric and textural information
less efficient for distinguishing land use/cover
types. Reduction of speckle noise is thus impor-
tant to increase the image quality for discrimina-
tion of different land use/cover types (Gao,
2009). The Gamma Maximum-A-Posteriori
(MAP) filter removes distinctive pixels in
homogeneous areas and retains edge sharpness,
thereby enhancing the scene targets, which is
useful for land use/cover classification of forest
and agricultural areas (Baraldi and Parmiggiani,
1995). The Gamma MAP filter with a kernel
size of 3 ¥ 3 pixels was thus performed on the
PALSAR images for the homogeneous areas to
better preserve texture information.

Short crop mapping
Forest conversion to agricultural land has been
an important cause of deforestation in northern
Thailand highlands (Giri et al., 2003). The
common agricultural land use types in northern
Thailand are shifting cultivation and short crop
rotation (Thomas et al., 2004; Ekasingh et al.,
2005). Time-series satellite images have been
used to improve classification accuracy (Ver-

besselt et al., 2010); images of different times of
a year may thus help to identify agricultural land
use types with short crop rotation. For example,
open water in the early rice growing stage in
paddy fields in April and May can seriously
affect the reflectance of infrared wavelengths,
resulting in paddy field being classified as a
water body if the April 2007 Landsat image is
used on its own. Similarly, crop fields, such as
maize and sweet corn grown from April to Sep-
tember, may be misinterpreted as bare land or
fallow field when using the dry season Landsat
image alone.

Radar images provide information on agricul-
tural land use during the rainy season when
optical data are often unavailable. The two
PALSAR images in June and September 2007
were therefore used for short crop mapping, par-
ticularly in extracting areas of paddy and crop
fields. Because of the precise radiation calibra-
tion of radar images, image ratioing was
employed to identify change areas of short crop
cultivation with the 11 June 2007 PALSAR
image as time 1 (t1) and the 11 September 2007
PALSAR image as time 2 (t2). Digital number
(DN) values of the two images were then used in
the following equation:

G i j
G i j G i j

G i j G i j
t
HH

t
HV

t
HH

t
HV

( , )
( ( , ) ( , ) ) .

( ( , ) ( , ) )
=

+ ×
+ ×

1 1

2 2

0 5

00 5.
(1)

where G(i, j) = Ratio of DN values among the
input channels at location (i, j), G i j t

HH( , )
1

= DN
value in HH polarisation at the same location
at t1, G i j t

HV( , )
1

= DN value in HV polarisation at
the same location at t1, G i j t

HH( , )
2

= DN value
in HH polarisation at the same location at t2,
G i j t

HV( , )
2

= DN value in HV polarisation at the
same location at t2.

Although areas that have not changed in the
interim should theoretically receive a ratio value
of 1 in the divided image while all the change
pixels should have a value of non 1, a threshold is
recommended to distinguish pixels of change
from pixels of no change (Gao, 2009). A histo-
gram of the resulting DN ratio values was
plotted; based on the range of radiometric accu-
racy and visual interpretation, the threshold for
no change was set for ratios between 0.8 and 1.2.
For pixels with ratios outside the range of 0.8–
1.2, they were identified as areas of change as a
result of rice ripening or crop harvesting, with
ratios between 0 and 0.8 as paddy field and
between 1.2 and 1.9 as crop field. The accuracy

324 Geographical Research • August 2012 • 50(3):320–331

© 2011 The Authors
Geographical Research © 2011 Institute of Australian Geographers



of short crop mapping was verified using a high
resolution (0.6 m) 2006 Quickbird image.
Additional field verification was conducted in
February and June 2009 for areas that could
be accessed. The areas extracted from short crop
mapping were subsequently incorporated with
multi-sensor data classifications through post-
classification editing in the next section.

Multi-sensor data classification and
post-classification editing
Based on a land use/cover classification scheme
for remotely sensed data (Anderson et al., 1976),
prior land use projects and studies (Thomas
et al., 2004; Ekasingh et al., 2005; Thomas,
2006), the report of the Office of Agricultural
Economy of Thailand (Office of Agricultural
Economics, 2007), and field observations, a total
of 14 land use/cover types were mapped in this
study. These included: 1. Evergreen forest, 2.
Fallow field, 3. Deciduous forest, 4. Horticultural
land, 5. Orchard, 6. Forest plantation, 7. Crop
field, 8. Urban village, 9. Water, 10. Range land,
11. Paddy field, 12. Barren land, 13. Pasture, and
14. Wetland. The sequence of the listed land use/
cover types, from evergreen forest to paddy field,
was in general distributed from high to low
altitudes.

The multi-sensor data used consisted of nine
input bands: one band of the PALSAR image
acquired on 11 June 2007; six bands of the
Landsat TM image; and one band of elevation
and one band of slope, both derived from the
ASTER DEM. These data were co-registered
and resampled into the same pixel size of 25 m.
Land use/cover classification was done using the
Maximum Likelihood Classifier (MLC). Care
was taken to ensure the representativeness of
training samples because of their potential influ-
ence on the classification result. The more exten-
sively a land cover was distributed over the scene,
the more pixels were selected as the training
samples for that class. For a class of a subordinate
areal extent, Gao (2009) suggested a total training
sample size of 100 pixels. In this study, the
average training sample size for the land use
classes was 12 197 pixels, with the maximum of
25 779 pixels for deciduous forest and the
minimum of 681 pixels for barren land, all of
which were considered sufficient for the MLC
method according to Mather (2004). The training
samples for each of the land use/cover types were
determined based on local area knowledge of the
research team, image interpretation, and field
survey in February and June 2009.

The MLC was conducted using the same train-
ing sample set for each individual band and
various combinations of bands of the multi-
sensor data sets, consisting of the PALSAR
image, the Landsat image, and terrain informa-
tion on elevation and slope derived from the
ASTER DEM. Post-classification editing was
then carried out to incorporate the classifications
from the multi-sensor data sets with the short
crop areas extracted from short crop mapping of
the multi-temporal PALSAR images. As a result,
a total of 12 different combinations were pro-
duced for subsequent accuracy assessments,
including: 1. PALSAR (P), 2. PALSAR-elevation
(PE), 3. PALSAR-elevation-slope (PES), 4.
PALSAR-elevation-slope-short crop (PES-SC),
5. Landsat TM (L), 6. Landsat TM-elevation
(LE), 7. Landsat TM-elevation-slope (LES), 8.
Landsat TM-elevation-slope-short crop (LES-
SC), 9. Landsat TM-PALSAR (LP), 10. Landsat
TM-PALSAR-elevation (LPE), 11. Landsat
TM-PALSAR-elevation-slope (LPES), and
12. Landsat TM-PALSAR-elevation-slope-short
crop (LPES-SC).

Accuracy assessment
To assess the classification accuracy, an aligned
systematic sampling approach, modified from
Ismail and Jusoff (2008), was applied. By using
a grid of 4 km ¥ 4 km (Figure 3), a total of 292
ground reference points were generated for the
whole study area.

Of the 292 ground reference points, visual
interpretation following Lung and Schaab (2010)
was carried out for 238 points using the original
Landsat image facilitated by the high resolution

Figure 3 Distribution of the 292 reference points for clas-
sification accuracy assessment.
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2006 Quickbird image, and field verification was
done in late 2009 and early 2010 for 54 points
where the locations could be reached. This refer-
ence data set was used in classification accuracy
assessment for the 12 combinations of the multi-
sensor data sets. Accuracy reports were then
generated from a confusion matrix for overall
accuracy, the Kappa coefficient, the producer’s
accuracy, and the user’s accuracy. Furthermore,
to examine the extent to which the multi-sensor
classification was able to map the crop and
paddy fields, the areas detected using short crop
mapping were overlaid with the multi-sensor
classification that had the best classification
accuracy before the incorporation of short crop
mapping.

Results and discussion
For each of the 12 different combinations of the
multi-sensor data sets, classification accuracy
was assessed by referencing to the 292 refer-
enced points distributed over the study area (cf.
Figure 3). In general, the classification accura-
cies increased when topographic data of eleva-
tion and slope and the results of short crop
mapping were combined with the remote sensing
images. The overall accuracies ranged from
19.2% for using the PALSAR image alone to
89.7% for combining the Landsat and PALSAR
images with elevation, slope, and short crop
mapping (Table 1).

The use of the single PALSAR image (11 June
2007) produced very poor classification result,
probably due to the layover and foreshortening
effects on radar images caused by the terrain
features in the study area. The Kappa coefficient
was only 0.10. Although the smooth surface and
dark tones of water and bright tones of forest
plantation led to relatively high classification
accuracies, low accuracies in other land use/
cover types suggested the difficulty of using the
tonal information of single PALSAR image in
classification (Table 1). Indeed, mountainous ter-
rains often caused distortion of radar tones,
resulting in some land use/cover classes having
similar brightness, such as evergreen forest (dis-
tributed in highlands) and range land (mostly
found in lowlands). When elevation data were
integrated with PALSAR to separate the distribu-
tions of the land use classes, the accuracies
improved, which was evident from the increased
producer’s accuracy from 37.5% with P to 75%
with PE for the evergreen forest class (Table 1).
In the study area, the distribution of land use/
cover is not only affected by elevation, but also

by slope. For example, deciduous forests are dis-
tributed in relatively steep areas with an average
slope of about 15%, while the land use/cover
type urban village is mainly located on flat
ground. Thus, when slope data were further com-
bined with elevation and the PALSAR image (i.e.
PES), the accuracies for some classes improved,
as seen in the increased producer’s accuracy
from 54.3% to 64.3% for deciduous forest and
from 7.7% to 38.5% for urban village (Table 1).

Analyses involving the Landsat TM image
generally produced higher accuracies than those
with only the PALSAR image because the multi-
spectral channels of Landsat TM enabled the dif-
ferentiation of more land use/cover types. This is
exhibited in the results for fallow field and barren
land that 0% accuracies were produced with the
use of PALSAR image (i.e. P) even when addi-
tional terrain information was incorporated (i.e.
PE and PES). Conversely, the producer’s accura-
cies for fallow field and barren land improved to
50% and 100%, respectively when the Landsat
image was used (Table 1). In addition, the results
in overall accuracy and Kappa coefficient were
considerably improved when topographic data of
elevation and slope were incorporated (i.e. LE
and LES). Fallow field, deciduous forest, forest
plantation, and paddy field all had relatively low
accuracies when classifications were done using
remote sensing images only (i.e. L and LP). The
incorporation of the elevation data, however,
increased the producer’s accuracy from 50%
with L to 71.4% with LE for fallow field. Accu-
racies for deciduous forest also increased when
the classification was done with LPE as opposed
to LP (Table 1). Indeed, land use/cover patterns
in the mountainous study area remain closely
related to the altitudinal zones (Thomas et al.,
2004), and the distribution of forest classes is
closely related to elevation. Alternatively, slope
plays a role in further discriminating land use/
cover classes that are distributed within a similar
elevation range, especially in separating decidu-
ous forest from other vegetation types for the
areas below 1000 m. Compared with using only
LE, the Kappa coefficients increased from 0.69
to 0.77 when slope was included in the multi-
sensor data sets (i.e. LES). The producer’s accu-
racies also increased for deciduous forest (from
85.7% to 95.7%) and horticultural land (from
44.4% to 66.7%) from LPE to LPES (Table 1).
These results underscored the usefulness of
incorporating terrain information into land use/
cover classification in mountainous environ-
ments. Combining terrain factors of elevation
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and slope greatly reduced confusion between dif-
ferent land use/cover types, thereby improving
the measures of classification accuracy.

Among the nine combinations of multi-sensor
data sets before integrating with short crop
mapping, LPES had the best overall accuracy and
the highest producer’s and user’s accuracies for
the land use classes of crop field and paddy field
(Table 1). The distributions of crop and paddy
fields detected by short crop mapping were there-
fore overlaid with the classification result of
LPES to examine the extent to which the LPES
classification was able to map these two land
use classes. Short crop mapping using multi-
temporal PALSAR images detected that 6.1%
(285.7 km2) and 1.8% (81.7 km2) of the study
area were crop and paddy fields, respectively.
Among the areas of crop field and paddy field
detected by short crop mapping, LPES classified
some of the crop areas into deciduous forest
(20.6%) and paddy field (13.6%), and some of
the paddies into crop field (19.9%) and pasture
(14.4%) (Table 2). The results showed the defi-
ciencies of the LPES classification in mapping
the short crop land use classes.

The accuracies for short crop agricultural land
use classes were improved when the results of
short crop mapping were integrated with the
multi-sensor data sets. As demonstrated in the
addition of short crop mapping to PES (i.e. PES-

SC), the producer’s accuracy for crop field
increased from 24% to 52% and for paddy field
from 26.3% to 42.1% (Table 1). For the multi-
sensor classifications of LPES compared with
LPES-SC, the producer’s accuracies for crop
field and paddy field notably improved from 72%
to 96% and from 57.9% to 73.7%, respectively.
The results echoed prior studies (e.g. Pan et al.,
2010) that the accuracy of mapping crop fields
could be improved by including multi-temporal
data in the procedure. The capability of radar to
penetrate clouds and the sensitivity of its signal
to the surface roughness provided information on
agricultural land use during the rainy season. In
the 11 June 2007 PALSAR image, young rice
paddies appeared in dark tone because most of
the paddy fields were still covered by water,
while short crops in the middle of their growth
stage appeared in bright tones. Conversely, in the
11 September 2007 image, ripened rice paddies
appeared in bright tones, while harvested short
crop fields that had become fallow fields
appeared in dark tone. Short crop mapping from
the multi-temporal PALSAR images could there-
fore be of great benefit in discriminating agricul-
tural land use types, particularly in tropical
mountainous areas with persistent cloud cover
during the rainy season.

The best classification result was produced
when short crop mapping and elevation and slope

Table 2 Composition of the land use/cover types derived using the multi-sensor Landsat-PALSAR-elevation-slope (LPES)
classification for the areas of crop and paddy fields extracted using the short crop mapping of the multi-temporal PALSAR data.

Land use/cover types
classified using the LPES

Short crop mapping of the multi-temporal PALSAR data

Crop field Paddy field

Area (km2) % Area (km2) %

Evergreen forest 31.2 10.9 1.3 1.6
Fallow field 14.7 5.1 2.4 3.0
Deciduous forest 58.9 20.6 5.2 6.3
Horticultural land 15.4 5.4 1.1 1.4
Orchard 6.2 2.2 2.6 3.2
Forest plantation 22.5 7.9 6.6 8.1
Crop field 12.3 4.3 16.3 19.9
Urban village 15.1 5.3 5.1 6.2
Water 3.3 1.1 2.3 2.8
Range land 10.1 3.5 9.7 11.8
Paddy field 38.9 13.6 7.9 9.7
Barren land 3.9 1.4 5.8 7.1
Pasture 20.6 7.2 11.8 14.4
Wetland 32.7 11.4 3.6 4.4
Total 285.7 100.0 81.7 100.0
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were combined with the Landsat and PALSAR
images (i.e. LPES-SC). An overall accuracy of
89.7 % was achieved with the Kappa coefficient
of 0.88 (Table 1). A thematic land use/cover map
was thus produced using the LPES-SC classifi-
cation (Figure 4). The results show that decidu-
ous forest is the dominant land cover class in the
study area at 25.1%, followed by forest planta-
tion at 15.9% and evergreen forest at 15.2%
(Figure 4). Together, these three land use/cover
classes accounted for more than 50% of the land-
scape. The three largest agricultural land use
classes were crop field, fallow field, and orchard,
accounting for 9.3%, 6.3%, and 4.7% of the
study area, respectively. The accuracies for these
forest and agricultural related land use/cover
classes using the multi-sensor classification of
LPES-SC were all above 80% (Table 1).

Conclusions and future work
The study assessed the potential of using multi-
sensor data sets in land use/cover mapping in
a tropical mountainous environment. The data
sets used included the multi-temporal ALOS-
PALSAR images, spectral features from Landsat
TM, and topographic information of elevation

and slope. Multi-temporal PALSAR images were
first used in short crop mapping of crop and
paddy fields because radar images provided
complementary information on agricultural land
use during the rainy season. Accuracy assess-
ments were next conducted to evaluate the clas-
sification results of 12 different combinations of
the multi-sensor data sets. The results showed an
increased overall accuracy from 19.2% using the
PALSAR image alone to 87.7% with the LPES
classification, and it improved to 89.7% when
short crop mapping was further integrated with
the LPES. Because of the mountainous terrain of
the study area, elevation and slope played an
important role in accounting for the distribution
of land use/cover patterns. Incorporating terrain
information was thus useful in improving the
classification accuracies. In particular, elevation
and slope data derived from a DEM provided
valuable ancillary data, which was evident in the
increased producer’s accuracy from 37.5% with
P to 75% with PE for the evergreen forest class.
Also, fallow field, deciduous forest, forest plan-
tation, and paddy field all had relatively low
accuracies when classifications were made using
remote sensing images only, but adding elevation

Figure 4 Land use/cover map produced using the multi-sensor classification of Landsat Thematic Mapper-Phased Array type
L-band Synthetic Aperture Radar-elevation-slope-short crop.
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and slope as input bands for classification greatly
improved the accuracies.

The study presented a useful method for land
use/cover mapping in mountainous areas where
persistent cloud cover during the rainy season
inhibited the use of optical images. The study
used the MLC, a commonly used technique in
the remote sensing literature. An alternative clas-
sifier, such as an artificial neural network (e.g.
Sunar Erbek et al., 2004; Lein, 2009), could also
be useful because it requires no a priori knowl-
edge about the statistical distribution of the input
land use/cover class data.
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